New nanoparticle developed for intravenous cancer immunotherapy - Science Daily

Cancer immunotherapy seeks to turn "cold" tumors into "hot" tumors -- those that respond to immunotherapy -- by awakening and enlisting the body's own immune system.

Unfortunately, few people benefit from the most common form of immunotherapy, called immune checkpoint inhibitors, and scientists are actively seeking new and safe molecules called agonists to augment the body's immune response. One promising drug in clinical trials is the STING agonist. STING is a protein essential to the immune response against infection as well as cancer.

In searching for molecules that would augment the STING pathway, a team of scientists at the University of Michigan School of Pharmacy and the Rogel Cancer Center looked to nutritional metal ions, which we absorb from food, and are important for immune regulation.

They found that adding the nutritional metal ion manganese to STING agonists boosted STING's tumor-fighting capability up to 77-fold, compared to STING agonists used alone, said James Moon, the J.G. Searle Professor of Pharmaceutical Sciences and professor of biomedical engineering.

When researchers added the manganese ions to STING agonists, they formed nano-sized crystals, which significantly increased cellular uptake of STING agonists and STING activation by immune cells. To develop a STING agonist for intravenous administration, the researchers coated these nanocrystals with a lipid layer (similar to those found in mRNA COVID19 vaccines), resulting in a nanoparticle system...



Read Full Story: https://www.sciencedaily.com/releases/2021/09/210930125016.htm

Your content is great. However, if any of the content contained herein violates any rights of yours, including those of copyright, please contact us immediately by e-mail at media[@]kissrpr.com.